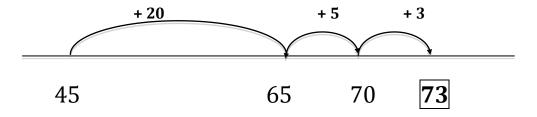
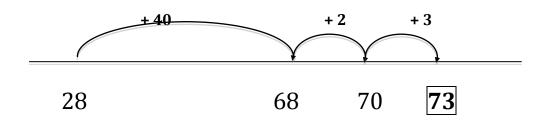
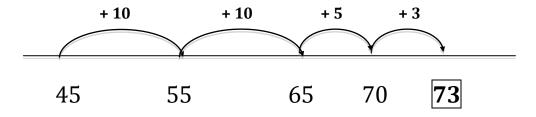

ADDITION


Front end/Splitting both numbers


$$20 + 40 = 60$$

 $8 + 5 = 13$
73

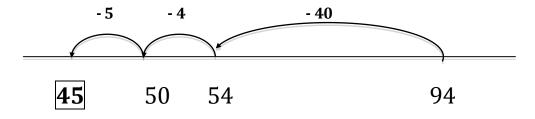
$$20 + 8 + 40 + 5 60 + 13 = 73 (60 + 10 + 3)$$


Keeping One Number Whole, Taking Friendly Jumps (Shown on Open Number Lines)

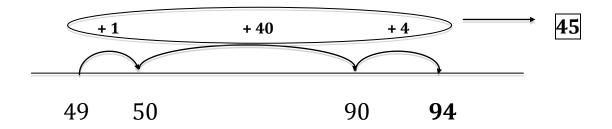
Or smaller friendly jumps of 10

(Shown on Open Number Lines)

Compensation


For
$$28 + 45$$
, think "I know $30 + 45 = 75$ I added 2 extra so I need to subtract them": $75 - 2 = 73$

Take 2 from 45 and give it to 28 to make a friendly number (30):


SUBTRACTION

Keeping One Number Whole, Taking Friendly Jumps (Shown on Open Number Lines)

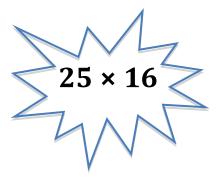
Think addition: $49 + \square = 94$

Splitting both numbers

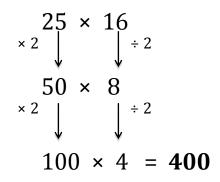
94 – 49: There won't be enough ones, so I'll split 94 this way:

$$94 = 80 + 14$$

- $49 = 40 + 9$ Now I can subtract
 $40 + 5 = 45$


Compensation

Constant Difference


Add 1 to both numbers to make a friendly number (50):

$$94 - 49$$

+1 \downarrow \downarrow +1
 $95 - 50 = 45$

MULTIPLICATION

Halve and Double

Think of Money

$$25¢ \times 16$$
 There are $4 \times 25¢$ in \$1 so $16 \times 25¢ = 4 or **400**¢

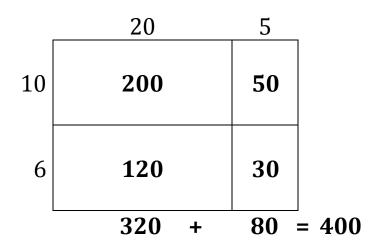
Partial Products

Break up 16 into 10 + 4 + 2

$$25 \times 10 = 250$$

 $25 \times 4 = 100$
 $25 \times 2 = 50$
400

MULTIPLICATION


 25×16

cont'd

Partial Products

Area Model (Open Array)

$$25 = 20 + 5$$

 $16 = 10 + 6$

DIVISION

Equal Sharing

- 1. Give each group 50. 6 × 50 = 300 97 left to share
- 2. Give each group 10. 6 × 10 = 60 37 left to share
- 3. Give each group 6. 6 × 6 = 36 1 left over

50 10 6	50 10 6
50 10 6	50 10 6
50 10 6	50 10 6

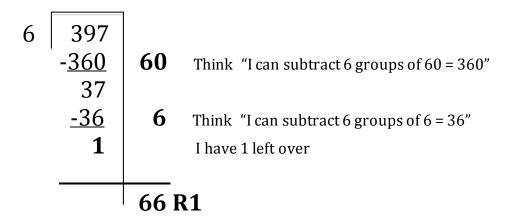
Each group gets 66, one left over

Using Multiplication

$$6 \times \square = 397$$

$$6 \times \cancel{60} = 360$$

$$6 \times \cancel{60} = 360$$


$$\cancel{396}$$

 $6 \times 66 = 396$

 $397 \div 6 = 66$ with a remainder of 1 (R1)

$$\frac{\text{DIVISION}}{\text{cont'd}} \qquad \qquad 397 \div 6$$

Repeated Subtraction

Splitting the Dividend into Friendly Numbers